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1. Introduction

We consider a class of optimal learning problems in which
sequential measurements are used to gradually improve
estimates of unknown quantities. In each time step, we
choose one of finitely many alternatives and observe a ran-
dom reward whose expected value is the unknown quantity
corresponding to that alternative. The rewards are indepen-
dent of each other and follow a Gaussian distribution with
known variance. We maximize the total expected reward
collected over time, a problem class often addressed under
the umbrella of multiarmed bandit problems. We allow sev-
eral variations of this basic setup: the rewards may be
discounted over time, the time horizon may be finite or
infinite, and our beliefs about the unknown rewards may be
correlated. Correlated beliefs are not handled by the tradi-
tional bandit literature but are significant in practice.

Applications arise in many fields where we need to
sequentially allocate measurements to alternatives in order
to eliminate less valuable alternatives as we go. We deal
with online learning in this paper, so we consider appli-
cations in which we are interested not only in finding the
best alternative but in maximizing the fotal expected reward
collected over the entire time horizon. Several situations
where this distinction is important are:

1. Clinical trials. Experimental drug treatments are
tested on groups of human patients. Each treatment has
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a different, unknown expected effectiveness (Gittins and
Jones 1979, Berry and Pearson 1985). We are interested
in the well-being of the patients as well as in finding the
best treatment, so the problem is on line. If the treatments
consist of overlapping sets of drugs, our beliefs about them
will be correlated.

2. Energy management. We are applying sets of energy-
saving technologies (e.g., insulation, computer-controlled
thermostats, tinted windows) to identical industrial build-
ings. Different technologies interact in an unknown way
that can be measured only by actually implementing portfo-
lios of technologies and measuring their combined perfor-
mance. We maximize total performance over all buildings.

3. Sensor management. In this area, a sensor (airport
inspector, radiation detector, medical clinic) is used to col-
lect information about the environment. We often have the
ability to control the use of a sensor, which allows us to
not only better learn the state of the system, but also to
learn relationships among different variables. See Mahajan
and Teneketzis (2008) and Washburn (2008) for more on
applications.

The dimension of correlated beliefs generalizes the well-
known multiarmed bandit problem, which assumes that our
beliefs about the rewards are independent of each other.
Much of the literature on multiarmed bandits has focused
on the development of index policies. An index policy



Ryzhov, Powell, and Frazier: Knowledge Gradient for Online Learning
Operations Research 60(1), pp. 180-195, © 2012 INFORMS

181

decomposes the problem by considering each alternative
separately from the others, and computing a value for each
alternative that depends only on our beliefs about that alter-
native and not on our beliefs about other alternatives. The
most famous of these is the policy based on Gittins indices
(Gittins and Jones 1974), which is optimal for the clas-
sic infinite-horizon bandit problem. Alternatives to Gittins
indices include upper confidence bounding (Lai 1987) and
interval estimation (Kaelbling 1993). These methods con-
struct an interval around our current estimate of the value
of an alternative, such that the true value is in the inter-
val with high probability, and then measure the alternative
whose interval has the highest upper bound.

One problem with Gittins indices is that they are hard
to compute exactly when the space of possible beliefs is
infinite. The computation of Gittins indices is discussed
by Katehakis and Veinott (1987) and Duff (1995). An LP-
based computational method was developed by Bertsimas
and Nino-Mora (2000), but it is founded on a Markov deci-
sion process framework (see also Goel et al. 2009 for more
work in this setting) where the prior beliefs are limited
to a finite set of values, whereas the Gaussian beliefs in
our problem are characterized by continuous parameters.
There have been several studies on approximating Gittins
indices for the continuous case (Brezzi and Lai 2002, Yao
2006, Chick and Gans 2009), but such approximations rely
on a continuous-time analogy that is subject to errors in
the discrete-time bandit model. In addition to the optimal-
ity of the Gittins policy, there is also a body of work
on theoretical performance guarantees for certain classes
of index policies. General bounds on the performance of
upper confidence bound policies are presented by Lai and
Robbins (1985) and by Auer et al. (2002) for the case of
rewards with bounded support. The upper confidence bound
approach has also been extended to more complex optimal
learning problems, such as Markov decision processes with
unknown transition functions (Tewari and Bartlett 2007)
and response-surface bandits (Ginebra and Clayton 1995).

There are also many general heuristics—described,
e.g., in Sutton and Barto (1998) or Powell (2007)—that can
be applied to broad classes of optimal learning problems,
including multiarmed bandits. Examples include Boltzmann
exploration, pure exploitation, and the equal-allocation pol-
icy. Empirical comparisons of some policies in certain set-
tings are available in Vermorel and Mohri (2005).

Our approach applies to the classic bandit problem but is
also able to handle problems where our prior belief about
the reward of one alternative is correlated with our beliefs
about other rewards. For example, the first two applications
considered above are instances of the subset selection prob-
lem: we have to investigate a medical treatment (consisting
of one or more drugs) or an energy portfolio (of multi-
ple energy-efficient technologies). Correlated beliefs allow
us to learn about many subsets with common elements by
measuring only a single one. It is logical to suppose that
implementing a particular energy portfolio teaches us about

the value of other portfolios containing the same technolo-
gies. If our beliefs are highly correlated, we can consider
problems where the number of choices is much larger than
the measurement budget, because a single measurement
can now provide information about many or even all the
alternatives.

The classical literature on index policies generally does
not handle correlated beliefs. Gittins indices are no longer
optimal in this setting. Some studies such as Feldman
(1962) and Keener (1985) have considered correlated
beliefs in a simple setting with only two possible values for
a single unknown parameter. Recent work has considered
more complex correlated problems under various struc-
tural assumptions. For example, the study by Pandey et al.
(2007) considers correlated binomial rewards. An important
step forward in the study of correlated bandits was made by
Mersereau et al. (2008, 2009). These studies assume a par-
ticular structure in which the rewards are linear functions
of random variables, and the correlations come from a sin-
gle random variable shared by every reward. In this case,
a greedy policy that always chooses the alternative that we
believe to be the best, with no regard for the uncertainty in
this belief, can be shown to perform very well. Our work,
however, considers a more general correlation structure in
the form of a multivariate Gaussian prior.

Our analysis is motivated by the knowledge gradient
(KG) concept, developed by Gupta and Miescke (1994)
and further analyzed by Frazier et al. (2008) and Chick
et al. (2010) for the ranking and selection problem. This
problem is the offline version of the multiarmed bandit
problem: we must find the best out of M alternatives with
unknown rewards, given N chances to learn about them
first. The KG policy for ranking and selection chooses the
measurement that yields the greatest expected single-period
improvement in the estimate of the best reward, a quantity
that can be computed exactly. More recently, the KG con-
cept was extended by Frazier et al. (2009) to the ranking
and selection problem with correlated priors, and by Chick
et al. (2010) to the case of unknown measurement noise.

The knowledge gradient offers an important practical
advantage: it is easily computable, in contrast with the
far more difficult calculations required for Gittins indices.
We present experimental evidence that our KG policy is
competitive against the best available Gittins index approx-
imation, given by Chick and Gans (2009). Furthermore, the
knowledge gradient methodology can be applied to other
distributions, although these require the development of dif-
ferent computational formulas.

This paper makes the following contributions: (1) We
propose a new type of online learning policy, based on the
knowledge gradient concept. This policy is not an index
policy but rather a one-step look-ahead that computes the
marginal value of a single measurement. This quantity is
much easier to compute than Gittins indices, with a nat-
ural derivation that is easy to understand. (2) We show
how this method can handle important variations, such as
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both finite and infinite time horizons and discount factors.
(3) We show that as the discount factor becomes large,
the infinite-horizon KG policy achieves the best possible
estimate of the value of the best alternative. Furthermore,
only one alternative can be measured infinitely often by
the policy, and the probability that it will be the true best
alternative converges to 1 as the discount factor becomes
large. (4) We conduct a thorough experimental study of
the performance of KG for problems with both indepen-
dent and correlated beliefs. We find that KG is competitive
against the best known Gittins approximation on classic
bandit problems and outperforms other index policies and
heuristics on problems with correlated beliefs, without any
tunable parameters.

We proceed as follows. In §2, we lay out a dynamic
programming-based model of the problem. In §3, we derive
the KG measurement policy for problems with independent
beliefs, with both discounted and undiscounted, finite- and
infinite-horizon variations. In §4, we derive convergence
results for the infinite-horizon discounted KG policy as
the discount factor increases to 1. In §5, we extend KG
to problems with correlated beliefs. Finally, we present
numerical results comparing online KG to existing policies.
We emphasize KG as a general approach to different kinds
of optimal learning problems that can be extended to more
complicated problem classes; for one example of such an
extension, see Ryzhov and Powell (2011).

2. Mathematical Model for Learning

Suppose there are M objects or alternatives. In every time
step, we can choose any alternative to measure. If we mea-
sure alternative x, we will observe a random reward [,
that follows a Gaussian distribution with mean w, and
variance o7. The measurement error o is known, and
we use the notation B, = 0,2 to refer to the measure-
ment precision. Although u, is unknown, we assume that
e ~ N (o, (69)?), where u® and o represent our prior
beliefs about w,. We also assume that the rewards of
the objects are mutually independent, conditioned on u,,
x=1,...,M.

We use the random observations we make while measur-
ing to improve our beliefs about the rewards of the alterna-
tives. Let F" be the sigma-algebra generated by our choices
of the first n objects to measure, as well as the random
observations we made of their rewards. We say that some-
thing happens “at time n” if it happens after we have made
exactly n observations. Then

wr=E"(u,),

where E"(-) =E(- | ") represents our beliefs about w,
after making n measurements. Then (o")? represents the
conditional variance of w, given ", which can be viewed
as a measure of how confident we are about the accuracy
of w". We also use the notation 8" = (¢”)~2 to denote the

conditional precision of u,. Thus, at time n, we believe
that w, ~ N (", (0")?), and our beliefs are updated after
each measurement using Bayes’ rule:

non ;yn+l1
M if x is the (n+ 1)st
= B+ B, object measured, (1)
JI otherwise.

The rewards of the objects are independent, so we update
only one set of beliefs about the object we have chosen.
The precision of our beliefs is updated as follows:

Br+pB, if x is the (n+1)st object measured,
B = 2

B otherwise.

We use the notation w" = (uf,...
B, ..., BY). We also let

my) and B" =

(1) = Var (i) = Var! (™) = Var(ul | 7)
be the reduction in the variance of our beliefs about x that
we achieve by measuring x at time n. The notation Var}
denotes the conditional variance given " and given that
x is the (n + 1)st alternative measured. The quantity w”
is F"-measurable, and hence Var(u” | ") =0. It can be
shown that

6-“":1 — /(0-;1)2 _ (0-;1+1)2 —

It is known, e.g., from DeGroot (1970), that the conditional
distribution of u"*' given F" is N (", (6")%). In other

words, given F", we can write

1 1
By Bi+B.

wit=pi+al-Z, ?3)

where Z is a standard Gaussian random variable.
We can define a knowledge state

S” — (MW’ BH)

to represent our beliefs about the alternatives after n mea-
surements. If we choose to measure an object x" at time n,
we write

n+l __ M/ n n An+l
s =K"(s", X", @),

where the transition function K™ is described by (1)
and (2). For notational convenience, we often suppress the
dependence on """ when we write K¥. The term “knowl-
edge state” has numerous analogues in other communities.
The stochastic control literature uses the term “information
state” to denote the same concept, whereas the reinforce-
ment learning community often uses the term “belief state.”
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We assume that we collect rewards as we measure them.
For the time being, we also assume that the rewards are not
discounted over time. Thus, if we have N measurements
to make, followed by one final chance to collect a reward,
our objective is to choose a measurement policy 7 that
achieves

N
supE™ > Moxmn(gnys 4)

™ n=0

where X™"(s") is the alternative chosen by policy 7 at
time n given a knowledge state s”. The value of following
a measurement policy 7, starting at time n in knowledge
state s”, is given by Bellman’s equation for dynamic pro-
gramming (applied to optimal learning by DeGroot 1970):

Vw,n(sn) — ,u';ﬂ'"(sn) + [Envar,nJrl(KM(Sn’ Xar,n(sn))), (5)
VTN (V) = max ul. (6)

At time N, we can collect only one more reward. There-
fore, we should simply choose the alternative that looks the
best given everything we have learned, because there are no
longer any future decisions that might benefit from learn-
ing. At time n < N, we collect an immediate reward for
the object we choose to measure, plus an expected down-
stream reward for future measurements. The optimal policy
satisfies a similar equation:

VEi(s") = max[py +E" V(KM (s, x)], ™)

VN (V) = max ®)

with the only difference being that the optimal policy
always chooses the best possible measurement, the one
that maximizes the sum of the immediate and downstream
rewards. By the dynamic programming principle, the func-
tion V*" represents the optimal value that can be collected
from time n onward and depends only on the past through
the starting state s". Thus, the expectation of V*"*! given
F" is over the single random transition from s" to s"*!.

3. The Online Knowledge Gradient Policy

We derive an easily computable online decision rule for an
undiscounted, finite-horizon online problem using the KG
principle. We then show that it is always better to mea-
sure under this policy than to not measure at all. Finally,
we derive KG decision rules for discounted and infinite-
horizon problems.

3.1. Derivation

Suppose that we have made n measurements, reached the
knowledge state s”, and then stopped learning entirely. That
is, we would still collect rewards after time n, but we would
not be able to use those rewards to update our beliefs.
Then, we should follow the “stop-learning” (SL) policy of

always choosing the alternative that looks the best based
on the most recent information. The expected total reward
obtained after time »n under these conditions is

VI (s") = (N = n+ 1) max e ©)

This quantity is somewhat analogous to the “retirement
reward” of Whittle (1980) because it represents a fixed
reward that we collect after retiring from the learning
problem.

The knowledge gradient concept, first described by
Gupta and Miescke (1994, 1996) and later developed by
Frazier et al. (2008), can be stated as “choosing the mea-
surement that would be optimal if it were the last measure-
ment we were allowed to make.” Suppose we are at time
n, with N — n 4+ 1 more rewards to collect, but only the
(n+ 1)st reward will be used to update our beliefs. Then,
we need to make an optimal decision at time n, under the
assumption that we will switch to the SL policy starting at
time n + 1. The KG decision rule that follows from this
assumption is

XKGn(s") = argmax u" +E"VS- KM (57, X)). (10)

If ties occur, they can be broken by randomly choosing one
of the alternatives that achieve the maximum.

The expectation on the right-hand side of (10) can be
written as

[EnVSL,n-H (KM(Sn, )C))

= (N — n)E" max u);!
=(N-— n)[Emax{n)ix,uﬁ,, wy+oy .Z}
=(N—n) (maxu?) + (N —n)vfon, (11)

where the computation of E" max, u";"' comes from Frazier
et al. (2008). The quantity vX%" is called the knowledge
gradient of alternative x at time n, and is defined by

kG — [EZ[(mgx,uﬁfrl) - (ma/tx,u?)}, (12)

where [ is a conditional expectation given F" and given
that x is the (n+ 1)st alternative measured. The knowledge
gradient can be computed exactly using the formula

) (13)

where f(z) = z2®(z) + ¢(z) and ¢, ® are the pdf and cdf
of the standard Gaussian distribution. We know from Gupta
and Miescke (1994) and Frazier et al. (2008) that (12) and
(13) are equivalent in this problem, and that vX¢ is always
positive. The term “knowledge gradient” arises from (12),

n n
KG.n _ ~n My —MaX ., Py
v =" fl-|—————=

X ]
g,
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where the quantity ¥X%" is the marginal value of the infor-
mation gained by measuring x.

It is easy to see that (10) can be rewritten as

XXGn(s") = argmax u" + (N — n)vkon, (14)

The term (N — n)max, u, in (11) is dropped because it
does not depend on the choice of x and thus does not affect
which x achieves the maximum in (10). The value of this
policy follows from (5) and is given by

VKG’ " (Sn) = I»L’;(KG, n(sn)

+[EanG,n+l(KM(Sn,XKG,n(Sn))). (15)

Instead of choosing the alternative that looks the best,
the KG policy adds an uncertainty bonus of (N — n)vX&"
to the most recent beliefs w”, and chooses the alternative
that maximizes this sum. In this way, the KG policy finds
a balance between exploitation (measuring alternatives that
are known to be good) and exploration (measuring alter-
natives that might be good), with the uncertainty bonus

representing the value of exploration.

ReMaARK 1. Like the KG policy for ranking and selection,
the online KG policy is optimal for N = 1. This follows
from (7) and (8), because

V*,N—I(SN—I) — max[,u,f" + IEN—IV*,N(KM(SN—I, x)])

=maxpu ' +EV! (mgxpﬁ)

= /\L])\(,Ki(}l\N—](SN—I)

+ [EN—I VSL,N(KM(SN—I XKG,N—I(SN—I)))
- /J/];(IK_GI,N—I(SN—I)

+ [EN—IVKG,N(KM(SN—I XKG,N—I (SN—I)))

— VKG’N_](SN_I).

The last measurement is chosen optimally, so if there is
only one measurement in the problem, then the online KG
algorithm is optimal.

The KG policy is analogous to a class of algorithms
in the stochastic control literature known as roll-out poli-
cies. These methods choose an action by approximating
the value obtained by following some policy after taking
the action. For example, the work by Tesauro and Galperin
(1996) uses Monte Carlo simulation to approximate the
value of the policy in a discrete-state Markov decision pro-
cess setting. The KG policy can be viewed as a one-step
roll-out algorithm in which we take a single action and
then follow the SL policy for the rest of the time horizon.
Although the state space (the space of all knowledge states)
is multi-dimensional and continuous, a one-step look-ahead
can be computed exactly, yielding a closed-form decision

rule, with no need for simulation-based approximation.
This is a strength of the KG approach, in a setting that
would otherwise be difficult to handle (because of the con-
tinuous state space) using classical dynamic programming
techniques.

Much of the traditional bandit literature, such as the work
on upper confidence bound policies by Lai and Robbins
(1985) and Lai (1987), has focused on index policies, with
decision rules of the form X™"(s") = argmax, I7 (u", o).
In an index policy, the index I7 used to determine the
value of measuring x can only depend on our beliefs w', o
about x and not on our beliefs about any other alternatives.
The KG policy, however, is not an index policy because the
formula for X9 in (13) depends on max,_ u}, as well
as on . Thus, the theoretical advantages of index policies
do not apply to KG; however, in §5 we consider an impor-
tant problem class where index policies are not well suited
but the KG reasoning still holds.

An expected structural result is that it is better to mea-
sure under the KG policy than to not measure at all. More
formally, the value obtained by the KG policy is greater
than the SL value of (9). The proof is given in the appendix.

ProposITION 1. For any s and any n,
VKG, n(s) > VSL’n(S).

3.2. Discounted Problems

Let us now replace the objective function in (4) with the
discounted objective function

N
SUpE™ D" Y o (gny

77 n=0

where y € (0, 1) is a given parameter and E” denotes an
expectation over the outcomes of the N measurements,
given that the measurement decisions are made according
to policy . In this section, we show the KG decision rule
for the discounted problem for both finite- and infinite-
horizon settings. We show that the infinite-horizon KG pol-
icy is guaranteed to eventually find the true best alternative
in the limit as y 7 1.

The knowledge gradient policy for this problem is
derived the same way as in §3. First, in the discounted
setting,

1— ,yN —n+1

VSL,n(sn) — ] —

max p}.
Then (10) is computed as

XKG(s") = argmax " +y - E"VSE KM (57, X))

N—n

1 —
=argmax,u;+yﬁyfqn’ (16)
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KG, n

where v°" is as in (13). Taking N — oo, we obtain the

infinite-horizon KG rule

XKGn(g") = argmax " + vac"". (17)
x 1- Y

Both (16) and (17) look similar to (14), with a different

multiplier in front of the knowledge gradient.

This discussion illustrates the flexibility of the KG
approach. We can derive a KG decision rule for both finite
and infinite horizons in both discounted and undiscounted
problems. As the discount factor y increases to 1, we can
obtain certain convergence results for the online KG policy.
These results are discussed in the next section.

Our paper focuses on a Gaussian learning model because
of its generality. In §5, we show how KG can be used in
problems with multivariate Gaussian priors, allowing us to
learn about multiple alternatives from a single measure-
ment. However, it is important to note that the KG approach
is not limited to Gaussian models and in fact represents
a general methodology that is applicable to many broad
classes of learning problems. To streamline our presenta-
tion, we maintain a focus on Gaussian models in the main
body of our paper. However, interested readers can see the
appendix for a discussion of how KG can be used in a
non-Gaussian setup.

4. Convergence Properties of
Infinite-Horizon KG

Our asymptotic analysis of the KG rule in (17) depends
on the concept of convergence. We begin by showing that
only one alternative can be measured infinitely often by
infinite-horizon KG. Thus, we can say that KG converges
to x if it measures x infinitely often. All proofs in this
section are given in the electronic companion. An electronic
companion to this paper is available as part of the online
version that can be found at http://or.journal.informs.org.

PROPOSITION 2. For almost every sample path, only one
alternative will be measured infinitely often by the infinite-
horizon discounted KG policy.

The particular alternative to which KG converges
depends on the sample path and is not guaranteed to be the
true best alternative arg max, u,. However, even the Gittins
index policy, which is known to be optimal, is not guaran-
teed to converge to the best alternative, either (Brezzi and
Lai 2000). The Gittins policy is optimal in the sense that it
learns efficiently, but it is not certain to find the true best
alternative.

However, we can establish theoretical guarantees for the
KG policy in the limiting case as y ' 1. The remainder
of this section presents two key results. First, KG achieves
an optimal estimate of the true best reward in the limit as
v /' 1. Second, the probability that KG converges to the
true best alternative argmax, w, converges to 1 as y 7 1.

That is, the convergence behavior of KG becomes optimal
in the limiting case.

Our argument is based on a connection to the ranking
and selection problem and the offline KG policy (Gupta
and Miescke 1996), given by

XO-"(s") = argmax E" [(ma}x ,uj“) - <ma}x ,u’;)]
= argmax v<%", (18)

where X" is as in (13). Observe that, for large vy, the

infinite-horizon online KG rule in (17) becomes similar
to (18). If vy is large enough, the effect of u” in (17)
becomes negligible, and the choice of measurement comes
to be determined by the KG factor, just as in the offline KG
rule. However, the work by Frazier et al. (2008) shows that
offline KG is guaranteed to find the true best alternative
in an infinite horizon. It stands to reason that online KG
should have the same property if y — 1.

Denote by KG(vy) the infinite-horizon online KG policy
for a fixed discount factor y. We define the stopping time

: Off,n/ n KG(y),ns n
N,=min{n > 0| X"""(s") # X M (sm))

to be the first time when the offline and online KG policies
choose different alternatives to measure (“disagree”). This
time is allowed to be zero, in the event that they choose dif-
ferent alternatives in the very first time step. In our analysis,
we assume without loss of generality that no two alterna-
tives will ever be tied under either policy. This is because
the outcome of each measurement is continuous, so the
probability that two KG factors or sets of beliefs will be
equal as a result of a measurement is zero. Ties can occur
only in the early stages, if those particular alternatives are
tied under the prior s°. However, in that case the ties will
disappear after a finite number of measurements, with no
effect on the asymptotic behaviour.

PROPOSITION 3. Under the probability measure induced by
the distribution of w and p"" for all n >0 and all x,

lim N,=o00 a.s.
v/1

We next show that by measuring infinitely many times
under the KG policy, we will obtain a better estimate of the
value of the best alternative than the estimate at time N,.
This is an intuitive idea. We already know that we expect
our time-(n + 1) estimate to be better than our time-n esti-
mate; the next proposition allows us to replace n with the
stopping time N,

PROPOSITION 4.

lim EX90) (max w") > EX9O) (max p)).

n—oc X X
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The next step shows that our estimate of the best value at
time N, becomes accurate in expectation as y ' 1. By def-
inition, the online and offline KG policies agree on all mea-
surements up to time N, . The proof uses the connection to
the offline KG policy.

PROPOSITION 5. lim,, ., EX®®)(max, pa) = E(max, ).

We can now state our first key result. As y 7 1, the
infinite-horizon limit of our estimate of the best value under
the KG policy converges to the true value of the best
alternative.

THEOREM 1.

ll;l’} lim EXGO (max wh) = [E(max M)
Y n—o0

In general, the result of Theorem 1 does not require con-
vergence to the true best alternative. However, in the spe-
cific case of the online KG policy, it can be shown that the
probability of the policy converging to a suboptimal alter-
native vanishes as y 7 1. The remainder of this section is
dedicated to showing this result.

Let B be the event that arg max, u, is measured infinitely
often and denote PXC((B) = [EKG(V)I For notational
convenience, let x, = argmax, w, and x7 = argmax, ,ux .
As before, we assume without loss of generahty that no
ties will occur. Observe that for fixed vy,

PREO)(B) = PKG(V)<ZI " oo)

n=0

> PG <Z Loy =00, X, = xl),
n=0

We will continue to place lower bounds on PX¢™)(B), in
order to eventually arrive at a lower bound that converges
to 1 as y /' 1. The next result is one step in this process.

PROPOSITION 6. For fixed vy,
PKG(Y)(Z 1 (o) =00, X, = xZ)
n=0

> pXe <x* =x), argmaxu" =xY Vn> Ny>.
X

Now, for every alternative x, define a process B* as fol-
lows. Given 9™, B* is a Browman motion with volatil-
ity O'_iV 7 and initial value B} = /.LX . Furthermore, for any
x#y, B* and B’ are conditionally independent of each
other given 7. We interpret B* as an interpolation of
the values of ,UJQIVM that we would observe by making
n=0,1, measurements of x starting from time N,.

partlcular ,LLX " has the same distribution as B;, where

Var(,u,i\]ﬁ” g

Ny) '
(027

"=

+) .
Observe that the conditional distribution of Mv kD , given
GN Ny+n Ny+n .
v and ,ux , is Gaussian with mean g, and vari-
ance (0

)2. This is precisely the distribution of Bj,.,

Nt conditionally indepen-

given B;,. Furthermore, u,’

dent of u™*" for n’ < n, %}Ven FM and u™*+". Thus, the
processes (B,)>, and (w.” ), are both Markov pro-
cesses with the same distribution given . By the con-
tinuity of Brownian motion, lim,_,  u" = u, corresponds
to By.

PROPOSITION 7. Let L
max,<; B;. Then,

J— 1 X j—
= ming, B and U, =

X

PXOO) (x* =x), argmaxu” =x) Vn> Ny)
X

> pXow) <L y > max U )
x;éx*

For each x, we can write B = B} + 0, Ny W}, where W~ is
a Wiener process. A standard result from stochastic analysis
(see, e.g., Steele 2000) tells us that max,,, W has the
same distribution as |W"|. Analogously, min,, W; has
the same distribution as —|W*|. Consequently, L, has the
same distribution as B — o, "|W}'|, and U, has the same
distribution as By + o, "|W;'|. We use these facts to derive
the next lower bound.

PROPOSITION 8. Define
h(u™, o) = prS <Lx1 > max U, | 91\’7),

where h depends only on u™r and ™. Then

NY
— maxx#«/ Mox

I
h(MNy’UN7)>g( ! : * ’0_N7>’

where g: R, xR is defined to be

w1 ()1

and g(a,0)=1.

Recall that B is the event that argmax  u, is measured
infinitely often. All the elements are now in place to show
our second key result, namely that the probability that
B occurs under the KG(vy) policy converges to 1 as y 7 1.

THEOREM 2. lim,, ., PX™)(B) =1.

Together, Theorems 1 and 2 add an important detail to
our understanding of the online KG policy. From Brezzi
and Lai (2000), we know that even the optimal Gittins
index policy has a positive probability of converging to a
suboptimal alternative for any y < 1. However, under the
KG policy, this probability vanishes to zero in the limit
as v /' 1, and our estimate of the best value under KG
converges to the true best value.



Ryzhov, Powell, and Frazier: Knowledge Gradient for Online Learning
Operations Research 60(1), pp. 180-195, © 2012 INFORMS

187

5. Problems with Correlated
Normal Priors

Let us return to the undiscounted setting and the objective
function from (4). However, we now assume a covariance
structure on our prior beliefs about the different alterna-
tives. We now have a multivariate normal prior distribution
on the vector u = (w,, ..., m,,) of true rewards. Initially,
we assume that u ~ N (u°, 2°), where u’ = (u?, ..., ub,)
is a vector of our beliefs about the mean rewards, and
30 is an M x M matrix representing the covariance struc-
ture of our beliefs about the true mean rewards. As before,
if we choose to measure alternative x at time n, we
observe a random reward "' ~ N (u,, 02). Conditioned
on W, ..., M, the rewards we collect are independent of
each other. After n measurements, our beliefs s” about the
mean rewards are expressed by a vector " and a matrix ¥,
representing the conditional expectation and conditional
covariance matrix of the true rewards given F".

The updating equations, given by (1) and (2) in the
uncorrelated case, now become

An+l

n+1 n Moyn _Mﬁ" n
=u'+ —=———"3%"e., 19
7 2 P (19)
Ste el 3"
SHl=3r - 20
o243 (20)
where x" € {1,..., M} is the alternative chosen at time n,

and e,. is a vector with 1 at index x", and zeros every-
where else. Note that a single measurement now leads us
to update the entire vector w”, not just one component as
in the uncorrelated case. Furthermore, (3) now becomes a
vector equation

Mn-H 2”’” _I_&corr,n(xn) . Z,

where Z is standard Gaussian and

e m
NCCES T
The SL policy, which we follow if we are unable to con-
tinue learning after time n, is still given by (9). The deriva-
tion of the online KG policy remains the same. However,

the formula for computing ¥%%" in (13) no longer applies.
In the correlated setting, we have

&COIT, n (xn) —

x T

Eymaxp" =E" [maxw; +o," " (x) Z)}.

We are computing the expected value of the maximum of
a finite number of piecewise linear functions of Z. Let

KGC,n __[cn n+1 _ n
G (GO R

be the analog of (12) in the correlated setting. From the
work by Frazier et al. (2009), it is known that

v OO =3 (63" () — 6y () f (= ey ), 21

yeA

where A is the set of all alternatives y for which we can find
numbers ¢, ; < ¢, for which y = argmax, u} + 6" "(x) -
z for z € (¢,_;, ¢,), with ties broken by the largest-index
rule. These quantities ¢, are also used in (21). We number
the alternatives in the set A in order of increasing o™ ".
The function f is as in (13). '

The online KG decision rule for the correlated case is
given by

XKGCn(s") = argmax u” + (N — n)v¥ecm, (22)

If we introduce a discount factor into the problem, the deci-
sion rule becomes as in (16) or (17), using »X6C instead
of ¥X6. An algorithm for computing ¥¥6¢ exactly is pre-
sented in Frazier et al. (2009) and can be used to solve
this decision problem. The computational complexity of the
algorithm is @(M?log M), but the following result (see the
appendix for the proof) allows us to reduce the computa-
tion time.

PROPOSITION 9. Let s" be the knowledge state at time n.
If alternative x satisfies the inequality

1
N2

B+ (N = ) —— max 57 (x) < max i, (23)

then alternative x will not be chosen by the KG policy at
time n.

The significance of Proposition 9 is practical. We require
@(M?) operations to ascertain whether or not (23) holds for
every alternative. Let x,, ..., xx represent the alternatives
for which (23) does not hold at time n (where K is the total
number of such alternatives). Then we can define a matrix
A" of size M x K by

Al=le, ... e.]

The time-n marginal distribution of (u,,...,H, ) is
Gaussian with mean vector (A")” w" and covariance matrix
(AM)T3"A". As a consequence of Proposition 9, the KG
decision rule in (22) can be rewritten as

XKCCn(sm) = argkmaxp,;k + (N — n)prkecn,

B3

where vX¢C:" can be computed by running the correlated

KG algorithm from Frazier et al. (2009) on the reduced
choice set {x,, ..., xg} with the marginal mean vector and
covariance matrix given above. Typically, in practice, K is
close to M for small values of n but becomes dramatically
smaller as n increases. Consequently, we only need to com-
pute KG factors for a choice set whose size can be much
smaller than M.
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6. Computational Experiments:
Independent Beliefs

Our experimental study presents evidence that online KG
is competitive against the best known approximation to the
optimal Gittins policy on classic multiarmed bandit prob-
lems (no correlations). At the same time, we single out key
parameters that might cause KG to perform less efficiently
for certain values. In §7, we also consider the correlated
case, and we show that KG outperforms many well-known
index policies in that setting.

The performance measure that we use to evaluate a pol-
icy is the opportunity cost. For a learning policy 7, the
opportunity cost for a discounted problem is given by

N
c"=>y" |:(mf_1x /.Lx) — ,LLXﬂ,n(s,,)}.
n=0

To obtain an accurate assessment of the quality of a pol-
icy, we calculate opportunity costs using the true values .
However, to do this we must know what the true values are.
Thus, we test a policy by first fixing a particular truth w,
then evaluating the ability of the policy to find that truth.
For this reason, the starting data for all our experiments
were randomly generated.
For two policies 7, and ,, the difference

N
Cm—C" = Z ')/”(/.wal,u(sn) - I-LXWZ./x(sn)) (24)

n=0

gives us the amount by which 7r; outperformed (or was
outperformed by) ,. For a given set of initial data, we
run each policy 10* times, thus obtaining 10* samples of
the opportunity cost. We then divide the 10* sample paths
into groups of 500 in order to obtain approximately normal
samples of opportunity cost and the standard errors of those
averages. The standard error of the difference in (24) is the
square root of the sum of the squared standard errors of
Ccm, C™,

In the classic multiarmed bandit problem, with N — oo
and 0 < vy < 1, there is a clear, natural competitor for KG
in the form of the optimal Gittins policy (Gittins 1989).
The Gittins decision rule is given by

XGitn(5") = arg max I'(ut, o, 0., 7). (25)

where I'(u”, o7, 0, v) is the Gittins index based on our
current beliefs about an alternative, the measurement error,
and the discount factor y. To simplify the computation of
Gittins indices, we use the identity

F(pt, o, 0,,y)=p"+o,- F(O, U—*, 1, y).
g

&

From Brezzi and Lai (2002), we know that

2
(o, s, 1,y)=\/—logy-b(— il ),

logy

where the function b must be approximated. The current
state of the art in Gittins approximation is the work by
Chick and Gans (2009), which builds on Brezzi and Lai
(2002) and Yao (2006). It is shown that b ~ b, where

N
- s<

V2

o—0-02645(Iogs)?+0.89106l0g5—0.4873

bl

| =

b(s)= %<s<100,

s(2logs —loglogs—logl6m)'/? s> 100.
V/s(2logs —loglogs —log

Thus, the approximation to (25) is given by

n\2
XGin,n(Sn) A argmax u; + o,/ —logy - b(_(zo-;)).
! o;logy
(26)

For many learning problems, it is more difficult to approx-
imate Gittins indices when vy is close to 1. However, the
particular approximation b given above uses a better fit for
the range 1/7 < s < 100 compared to previous approxima-
tions. As the posterior variance decreases, this range will
be exercised further on in the time horizon when Y is large.

We compared the infinite-horizon discounted online KG
rule from (17) against the Gittins approximation in (26).
The remainder of this section describes the methodology
and results of this comparison.

6.1. Effect of Prior Structure on KG Performance

We first consider a set of experiments where our mod-
eling assumption w, ~ N(u’, (00)?) is satisfied. These
experiments are referred to as truth-from-prior experiments.
We generated 100 problems with M = 100, where o = 10
for all x and each p? is a random sample from the distribu-
tion (0, 100). We followed Vermorel and Mohri (2005) in
using centered Gaussian distributions to generate the initial
data. The measurement noise was chosen to be o, = 10,
and the discount factor was chosen to be y =0.9.

For every experiment, we ran the KG and Gittins poli-
cies on 10* different sample paths. In every sample path,
the truths u, are generated from the prior distribution cor-
responding to the given experiment. The outcomes of the
measurements are then generated from those truths. Thus,
for each problem out of our set of 100, we have a sample
of the difference C%" — CXS, averaged over 10* different
truths. Figure 1(a) shows the distribution of these differ-
ences across 100 problems. Bars to the right of zero indi-
cate that KG outperformed the Gittins approximation, and
bars to the left of zero indicate the converse. KG outper-
formed the Gittins approximation on every problem. The
average margin of victory was 3.6849, with average stan-
dard error 0.7215.

The victory of KG in Figure 1(a) is due to the fact that
we are using an approximation of Gittins indices. While
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Figure 1. Histograms of the sampled difference in
opportunity cost between KG and Gittins
across (a) 100 truth-from-prior experiments,
and (b) 100 equal-prior experiments.
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the margin of victory is small, it indicates that the approx-
imation is not completely accurate. We can see from these
results that KG is a worthwhile alternative to the best
known approximation of the optimal policy.

We also consider a situation in which the main modeling
assumptions do not hold. In the equal-prior experiments,
we let u? =0 and ¢ = 10 for every x. The true values u,
come from a uniform distribution on the interval [—30, 30].
A new set of truths is generated for each experiment, but
not for each sample path. Each equal-prior problem has a
fixed truth, and we run the KG and Gittins policies on 10*
outcomes of the measurements. This represents a situation
that is common in real-world applications: we do not have
much information about the true values, and our prior gives
us only a general range of values for the truths without
telling us anything about which alternative is better. Fig-
ure 1(b) shows the results of the comparison. The average
margin of victory of KG is 6.7885, with average standard
error 0.8368.

Because w does not come from the prior distribution
in the equal-prior experiments, the Gittins policy loses its
optimality properties. While there are no theoretical guar-
antees in a situation where the main modeling assumption
is violated, Figure 1(b) suggests that the KG heuristic may
retain its practical usefulness in situations where we are
not certain that the truths really do come from the prior
distribution.

6.2. Effect of 0? and y on KG Performance

Two key parameters in the online problem are the mea-
surement noise o and the discount factor y. We varied
these parameters in 10 randomly chosen truth-from-prior
problems; that is, we considered 10 different sets of initial
priors. For each parameter value in each problem, we sim-
ulated KG and Gittins across 10* truths generated from the
initial prior (as in Figure 1(a)).

Figure 2 shows the effect of measurement noise on per-
formance. We varied o relative to the fixed prior variance
()? = 100. For instance, the point 10° on the horizontal
axis of Figure 2 indicates that o2 = (¢”)?, the point 107!
indicates that o> =0.1- (¢°)%, and so on. Points to the left
of 10° represent situations in which the measurement noise
is smaller than the prior variance, enabling us to come close
to the true value of an alternative in relatively few measure-
ments. Each line in Figure 2 corresponds to one of the 10
truth-from-prior problems considered; we do not label the
individual lines because they all exhibit the same behavior.

We see that the Gittins approximation performs poorly
compared to KG for low measurement noise. As o7
increases, the KG policy’s margin of victory shrinks. How-
ever, the Gittins policy also becomes less effective when
the measurement noise gets too high. We see that, for very
large values of o7, the difference C9" — CX% goes to zero
for all 10 problems under consideration.

A different relationship holds for the discount factor.
For large values of y, we see a distinction between the

Effect of the measurement noise o> on the
performance of KG relative to Gittins.

Figure 2.
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Figure 3.
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Effect of the discount factor y on the
performance of KG relative to Gittins for
(a) N =150 and (b) an infinite horizon.
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short-term and long-term performance of KG. Figure 3(a)
compares KG to Gittins with a time horizon of N = 150,
and Figure 3(b) shows the results with the time horizon
chosen to be large enough for y¥ < 1073. We see that in
both cases, KG and Gittins perform comparably well for
v=0.9, and KG begins to significantly outperform Gittins
for values of y up to 0.99. This lead of KG over Git-
tins is preserved in the infinite-horizon case. However, for
larger values (y = 0.999), we see that Gittins catches up
and significantly outperforms KG in the long run, although
KG does much better in the first 150 iterations. This result
suggests that the KG policy might perform especially well
in problems with relatively short time horizons, where the
budget is too small for Gittins to overtake KG. Our study of
correlated problems in the next section explores this issue
further.

Our analysis reveals some of the strengths and weak-
nesses of the KG policy. First, KG does much better than
approximate Gittins if ¢ is low and continues to match
Gittins as the measurement noise increases. Second, KG

is significantly outperformed by Gittins for y = 0.999
for the set of parameters we chose. However, for moder-
ately high values of the discount factor such as 0.99, KG
achieves a significant lead over approximate Gittins. For
many instances of the classic bandit problem, KG is com-
petitive against the best known Gittins approximation.

7. Computational Experiments:
Correlated Beliefs

This section describes the experiments we conducted on
problems with correlated beliefs. In §7.1, we explain the
setup of the experiments and present the main results.
The remainder of the section studies particular aspects of
correlated problems, such as the effect of correlation on
performance and the benefits obtained from incorporating
correlations into the KG decision rule.

7.1. Setup and Main Results

The class of correlated online problems is very large.
We tested KG on a subset of these problems, in which the
prior covariances are given by the power-exponential rule:
30 =100 e, (27)
where A is a constant. An example of a problem where this
covariance structure can be used is the problem of learning
a scalar function, where the covariance between i and j is
smaller when i and j are farther apart. We used this covari-
ance structure together with the values of u’ generated
for the truth-from-prior experiments in §6. The true values
were taken from the prior distribution /' (u’, =°). In every
problem, a new truth was generated in each of 10* sample
paths, allowing us to compare learning policies in expecta-
tion over the entire prior distribution. The parameter A was
set to 0.01.

Because there is no known optimal policy for correlated
bandit problems (to our knowledge, KG is the first policy
to be proposed for this problem), our experiments for the
correlated case assume a finite horizon of N = 50 with
v = 1. In this setting, a convenient measure of performance
is the difference in average opportunity cost

1

C™—CM= ——
N+1

N
Z,uxm.u(sn) _fofzﬁ(yX), (28)

n=0

which represents the amount by which 7, outperformed
or was outperformed by 7, on average in each time step.
We compared the correlated KG rule given in (22) to sev-
eral representative index policies, as well as an approximate
two-step look-ahead. We briefly describe the implementa-
tion of the competing policies.



Ryzhov, Powell, and Frazier: Knowledge Gradient for Online Learning
Operations Research 60(1), pp. 180-195, © 2012 INFORMS

191

Approximate two-step look-ahead (2Step). A natural
choice of competition for the KG policy, which looks ahead
one time step into the future, is a multi-step look-ahead.
Such a policy, however, is much more difficult to imple-
ment and compute than the KG policy. The decision rule
for the one-step look-ahead can be computed exactly using
(22), whereas there is no known closed-form expression for
a multi-step look-ahead rule.

We approximated a two-step look-ahead policy in the
following manner. The outcome of the measurement in
the first step was discretized into K branches by divid-
ing the conditional distribution of the measurement into
K + 1 intervals of equal probability. In the second step,
KG factors were computed based on the new beliefs result-
ing from the outcome on each branch. Thus, to make a
single decision at time n we must compute a total of
K - M correlated KG factors. The computational complex-
ity of this procedure is @(KM?*log M), which is already
noticeably costly for M = 100 alternatives. More generally,
an approximate d-step look-ahead would have complexity
G(K~'M?1og M) per decision, making it prohibitive to roll
out for more than two time steps.

In our experiments, we used K = 10. The accuracy of the
approximation can be improved by increasing K; however,
this adds greatly to the computational cost. By contrast,
the KG policy can be computed exactly, given extremely
precise approximations of the Gaussian cdf.

Approximate Gittins (Gitt). We use the Gittins approxi-
mation from (26) with o” = /3" . Gittins indices do not
retain their optimality properties in the correlated setting.
We use this policy as a heuristic and treat y as a tunable
parameter. In our experiments, y = 0.9 yielded the best
performance.

Interval estimation (IE). The IE decision rule by
Kaelbling (1993) is given by

XIE (") = argmax ! + 2, 0
X

where z,, is a tunable parameter. We found that z,,, = 1.5
yielded the best performance on average across 100 prob-
lems. However, the IE policy is sensitive to the choice of
tuning parameter. We discuss this issue in §7.3.

Upper confidence bound (UCB). The UCB decision rule
by Lai (1987) is given by

2 (N}
NeS\N )

where N is the number of times x has been measured up
to and including time n, and

XUCB,n(Sn) :Mz +

11 11
g(1) =log — — S loglog - — S log 16

UCB1-Normal (UCB1). The study by Auer et al. (2002)
proposes a different UCB-style policy for problems with
Gaussian rewards. The UCB1 decision rule is given by

1
XUCBLA(sm) = 7 4 dg, | ‘1’5” (29)

The original presentation of the policy uses a frequen-
tist estimate of the measurement noise o,. Because we
assume that this quantity is known, we can simplify the
decision rule, resulting in an interesting parallel to (26),
where the uncertainty bonus also has o, out in front. We
can improve performance by treating the coefficient 4 in the
UCBI decision rule as a tunable parameter; we found that
a value of 0.5 produced the best results for the problems
we considered.

Note also that the quantity Ug/\/N_;l in (29) can be
viewed as a frequentist analog of the posterior variance o).
In fact, if we begin with a noninformative prior on x (with
0 = c0), then 0" =0,/ \/N_;' exactly. We considered a ver-
sion of the policy with the decision rule XUCBL7(s7) =
argmax, u" + 40" /logn but found that this modification
did not substantially change the policy’s performance.

Pure exploitation (Exp). This decision rule is given by
XEpn(s") = argmax, u". It has no uncertainty bonus and
no tunable parameters.

Table 1 gives the means and average standard errors
of our estimates of (28) for each relevant comparison.
As before, positive numbers indicate that KG outperformed
the other policy in the comparison, and negative numbers
indicate the converse. We see that, on average, KG outper-
formed approximate Gittins indices, UCB, UCBI1, and pure
exploitation by a statistically significant amount. The 2Step
policy yielded virtually the same results as KG. Interval
estimation slightly outperformed KG on average, but the
margin of victory was not statistically significant. In §7.3,
we address the issue of the sensitivity of IE to its tunable
parameter.

Figure 4 shows the distribution of the sampled differ-
ences in opportunity cost across 100 truth-from-prior prob-
lems. We see that KG outperforms IE 23/100 times and
usually loses by a small margin when z,, is carefully
tuned. The 2Step policy outperformed KG 14/100 times
and was outperformed by KG the remaining times. How-
ever, the differences are not statistically significant in most
cases. The reason we do not see a significant advantage to
using the 2Step policy is that we are required to approxi-
mate the two-step look-ahead, whereas the one-step look-
ahead used by the KG policy can be computed exactly.

Table 1. Means and standard errors for the correlated experiments.

KG-2Step KG-Gitt KG-IE KG-UCB KG-UCBI1 KGC-Exp
Mean 0.0599 0.7076 —0.0912 44.4305 1.2091 5.5413
Avg. SE 0.0375 0.0997 0.0857 0.6324 0.1020 0.1511
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Figure 4. Histograms of the sampled difference in opportunity cost between KG and other policies across 100 correlated
truth-from-prior problems.
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All other policies are outperformed by KG in every
experiment. In particular, the UCB policy displays a very
large positive tail. This policy suffers, especially compared
to the other index policies, because it does not have any
tunable parameters and cannot be tweaked to yield bet-
ter results in the correlated case. The UCB1 policy yields
better performance once tuned but is nonetheless outper-
formed by both KG and interval estimation. In the case
of IE, the tunable parameter z,,, can be adjusted to make
the policy yield good performance. However, we observed
that the performance of IE was very sensitive to the choice
of tuning parameter (discussed further down in §7.3). In a
large problem where the distribution of the rewards is not
obvious, it might be difficult to tune this policy sufficiently.

7.2. Effect of Correlation on KG Performance

We varied the correlation parameter A for a single randomly
chosen problem out of the truth-from-prior set. Figure 5
shows the effect of A on the performance of different mea-
surement policies. Pure exploitation and UCB are omitted
from the figure, because they were found to significantly
underperform all other policies for each value of A consid-
ered. We see that the relative performance of the remaining
policies stays roughly the same as before as A is varied.
The 2Step policy continues to yield virtually the same per-
formance as KG. The tuned IE policy performs comparably
to KG overall, yielding slightly better results for low A.

KG-Gitt

KG-UCB
20
0
0 5 10
KGC-Exp

Generally, all policies tend to do better when all the
alternatives are heavily correlated (this occurs for low val-
ues of A). In this case, a single measurement will reveal a
great deal of information about all the alternatives, which
means that we can quickly get a sense of the best value
by measuring almost any alternative. However, even in this
setting, KG and IE are able to learn more efficiently than
approximate Gittins or UCBI.

Figure 5. Opportunity cost as a function of the corre-
lation parameter A.
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7.3. Sensitivity of Interval Estimation

Our experiments show that a properly tuned interval esti-
mation policy can work quite well, even for problems with
correlated beliefs. Because IE is particularly easy to imple-
ment, it is worth addressing the robustness of the tuning
parameter z,,,. We find that the process of tuning seems to
capture quite a bit of information about the function.

Figure 6 shows how the performance of IE varies for
different values of z,,, in the same truth-from-prior prob-
lem that we examined in §7.2. The best value of z,, is
about 1.7, but the performance is quite sensitive to this
parameter and deteriorates quickly as we move away from
the optimal value. Furthermore, the best value of z,, is
highly problem-dependent. Figure 7 gives two examples
of problems where the best value of the tuning param-
eter is very different from the truth-from-prior example.
Figure 7(a) shows the sensitivity of IE on one of the equal-
prior problems from §6, with the addition of a power-
exponential covariance structure. We see that the best
value of z,, is 0.6; a value of 1.7 yields much worse
performance.

Figure 7(b) shows the sensitivity of IE in the sine-
truth problem, where u, = —35sin((0.3/7)x) for x €
{1,2,...,100}. In this problem, the true values have a sin-
gle peak with a value of 35 around x = 50, two smaller
local maxima at O and 100, and two minima with values
of —35. The prior means are set to O for all alternatives,
halfway between the smallest and largest truths, and 20 is
given by a power-exponential structure with A =0.01 and
30 =25 for all x. The measurement noise is set to o2 =
25. The smallest and largest truth are very far apart in this
problem, and the prior does not provide any information
about the structure of the truth. In this situation, we see that
there is a range of values of z,/, that provide comparable
performance to KG, with the best value being 4.5. How-
ever, the value 1.7 is not in this range, and causes IE to be
outperformed by KG. Furthermore, the range of z,, values

Figure 6. Sensitivity of IE to the tuning parameter z,

in a truth-from-prior problem.
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Figure 7. Sensitivity of IE to the tuning parameter z,

in other problems.
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for which IE performs well can be shifted to the right by
increasing the amplitude of the sine wave, making it even
more difficult to tune IE when the truth is unknown.

The literature contains other examples of problems with
different optimal values of z,,. In the offline problem
studied by Frazier et al. (2008), the best value is 3.1. In
the particular online problems considered by Ryzhov and
Powell (2009a, 2009b), the best values of z,, are 1 and
0.75, respectively. Clearly, there is no one value of z,,, that
always works well.

The sensitivity of IE to the choice of z,,, is a weak-
ness of the IE policy. Although it can be tuned to per-
form equivalently to correlated KG, the range of values
of z,,, that yield good performance is relatively small.
Furthermore, the optimal range might change drastically,
dependingon the problem. We have presented examples of
problems where the best values of z,, are 0.6, 1.7, and
4.5, respectively. Each of these values yields good perfor-
mance in one problem and poor performance in the other
two. In light of this issue, we can conclude that correlated
KG has one attractive advantage over IE: it requires no
tuning at all, while yielding comparable performance to a
finely tuned IE policy.
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7.4. Comparison to Independent KG
Decision Rule

Finally, we consider the question of whether the correlated
KG decision rule given in (22) is able to offer substantial
improvement, in a correlated problem, over the indepen-
dent KG decision rule given in (14), with (13) used to
compute the KG factor. In other words, this is the issue of
how much KG gains by incorporating covariances directly
into the decision rule. Table 2 shows the average differ-
ence in opportunity cost between the correlated and inde-
pendent KG policies for four distinct problem settings:
the truth-from-prior problem considered in §7.2, the equal-
prior and sine-truth problems considered in §7.3, and the
quadratic-truth problem, where u, = —x* + 101x — 100
for x € {1,2,...,100}. Like the other three problems, the
quadratic-truth problem uses a power-exponential covari-
ance structure with A =0.01 and 2" = 500%. The measure-
ment noise is o2 = 3002

We see that correlated KG outperforms independent KG
in all four settings. However, the margin of victory in
the truth-from-prior problem is not statistically significant
(meaning that correlated and independent KG yield sim-
ilar performance). When the priors start out equal, how-
ever, correlated KG offers significant improvement. When
the truth has a specific structure, as in the sine-truth and
quadratic-truth problems, the improvement offered by cor-
related KG becomes even more dramatic.

We conclude that the value added by the correlated KG
decision rule over regular KG is problem-dependent. Recall
that the independent KG rule is itself a nonindex policy
that considers the estimates u” relative to each other when
making a decision. In a truth-from-prior setting, where the
prior is fairly accurate from the very beginning, this exami-
nation of the relative magnitudes of u’ can capture enough
information about the relationships between the alterna-
tives to allow us to obtain reasonably good performance
with the independent KG policy (at a lower computational
cost than correlated KG). However, if the prior contains
less information about the truth, as in the equal-prior set-
ting, it becomes more important to consider covariances
when making a decision. Furthermore, if the truth happens
to have more structure (e.g., if we are trying to find the
maximum of a continuous function), it is worth paying the
additional computational cost required to use the correlated
KG rule.

Table 2. Difference between correlated and indepen-
dent KG decision rules for different problem
settings.

Truth-from- Equal- Sine- Quadratic-
prior prior truth truth

Mean 0.0517 0.6124 1.2161 258.5264

Avg. SE 0.0914 0.0719 0.0233 4.3547

8. Conclusion

We have proposed a new type of decision rule for online
learning problems, which can be used for finite or infinite
horizons. In contrast with the Gittins index policy, which
looks at one alternative at a time over an infinite horizon,
the knowledge gradient considers all alternatives at once,
but only looks one time period into the future. There is an
explicit expression for the value of information gained in
a single time step, resulting in an easily computable deci-
sion rule for the KG policy. In the classic bandit setting
(infinite-horizon discounted), the probability that KG finds
the best alternative converges to 1 as the discount factor
approaches 1. Experiments show that KG performs compet-
itively against the best known approximation to the optimal
Gittins index policy.

One major advantage of the KG method is its ability to
handle problems with correlated beliefs. Index policies are
inherently unable to do this, because they depend on the
ability to consider each alternative separately from the oth-
ers. The nonindex nature of KG allows it to incorporate the
effects of correlation into the computation of the KG factor.
Experiments show that KG outperforms or is competitive
against a number of index policies from the traditional ban-
dit literature on problems with correlations. To our knowl-
edge, KG is the first learning policy that is able to consider
a multivariate Gaussian prior while making decisions. We
believe that KG represents an important step in the study of
problems with correlated beliefs while remaining a worth-
while alternative to the index policy approach in the tradi-
tional multiarmed bandit setting.

The empirical conclusions regarding the performance of
different policies reflect, of course, the specific experiments
we chose to run. It is not possible to generate every varia-
tion, and further research is needed to compare these poli-
cies in the context of different problems. However, we
believe that the experiments reported here are encourag-
ing and suggest that other researchers consider using the
knowledge gradient as a potential alternative to Gittins
indices and other index policies.

Electronic Companion

An electronic companion to this paper is available as part of the
online version that can be found at http://or.journal.informs.org/.
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